BROAD TOWN BUILDING THERMAL INSULATION RETROFITTING CASES FROM ONE COMMUNITY TO ONE PLANET

111

BUILDING THERMAL INSULATION CAN SAVE THE EARTH

Building contributed to 40% global $\rm CO_2$ emission. With only 4 simple measures, we can save energy by 4~10 times

Chilly areas like Moscow, Harbin

CO2

EXPERIENCE OF BUILDING THERMAL INSULATION AT BROAD TOWN --- WE EXPECT THE WORLD TO FOLLOW

With over 20 years' central air conditioning serving experience in 80+ countries, we realized that uninsulated buildings have caused the most widely energy waste in the world, which is far beyond anyone's imagination. Starting from 2008, we decided to retrofit the buildings at BROAD Group H.Q. in BROAD Town, to explore for the humankind a full set of experience of using less air conditioning. Now by sharing what we've discovered, we hope you can follow us and do thermal retrofitting by yourselves

FOUR TYPICAL RETROFITTING MEASURES AT BROAD TOWN — BUILDING INSULATION

COMPARISONS AMONG VARIOUS BUILDING ENERGY-EFFICIENT RETROFITTING MEASURES

Typical Payback Comparisons

Lifecycle Carbon Balance Comparisons

Sources: Mckinsey & Company <u>Unlocking Energy Efficiency in the U.S. Economy</u>, BROAD Building Energy Efficiency Company

BROAD QUALITY MANAGEMENT BUILDING

Building usage: Office Designed occupants: 400 Usage area: 4,212 m² Built in 1994 Retrofitted in 2008 Energy consumption before retrofitting: 294 kWh/m²·a Energy consumption after retrofitting: 61.2 kWh/m²·a Retrofitting expense: 217,000 USD Energy saving rate: 80% Payback: 2.9 years

Before Retrofitting

* kWh indicates primary energy, equals to 0.1kg of oil equivalent (the same applies to the following cases) 1kWh electricity equals to 4 kWh primary energy.

Wall Insulation

Thickness of polystyrene foam board: 150 mm, reducing heat transfer by 8 times (Multi-gridding and mortar in cracks, extremely durable) Exterior thermal insulation technology is very easy to learn and can be executed by ordinary workers after 1 week training.

Original Wall: Ceramic tile without insulation

Triple-paned Plastic Framed Window

Reduces heat transfer by 8 times

Original Window: Single-paned aluminum window

Exterior Solar Shading

Swing arm, cloth shade; Each window reduces roughly 1.5 kW of heat transfer

Original Window: Interior blinds

Before Retrofitting: Ventilation through open window

Heat recovery efficiency is

A/C Equipment

Cooling capacity 140 kW (40 USRT), gas-fired (2 units of BCT70 on the roof). Reduce cooling load by 6 times and reduce heating load to 0

Auto Revolving Door

Each revolve just loses 0.1 \sim 0.4 kWh of heat Annual energy saved equals to 5 ton oil

Original Door: Single-layer auto door

INVESTMENT PAYBACK LIST OF ENERGY-EFFICIENT BUILDING RETROFITTING

Thick exterior thermal insulation

Thickness of polystyrene foam board: 150 mm Heat transfer coefficiency: 0.24 W/m² K (Original wall without insulation: 2.1 W/m² K) Energy saved : 110 kWh/m².a (equals 11L oil) Annual total energy saved: 25.7 t.o.e Payback: 3.3 years

Triple-paned plastic framed window

Heat transfer coefficiency: 1.65 W/m² K (Original single-paned aluminum window: 13 W/m² K) Annual energy saved per square meter: 690kWh (equals 69L oil) Annual total energy saved: 20.9 t.o.e Payback: 1.3 years

Exterior solar shading

Effective solar shading time: 677 hrs/a (west windows) Annual energy saved by each board: 355 kWh Annual total energy saved: 2.1 t.o.e Payback: 3.9 years

Fresh Air Heat recovery <

Heat exchanging time: 2,700 h/a Enthalpy difference: 10 W/m³ Annual total energy saved: 21.2 t.o.e Payback: 3.7 years

Note: t.o.e is short for ton of oil equivalent

 Labor: 40 workers/35 days

 Material and construction cost: USD 28/m²

 Construction process:

 1. Base treatment
 2. Interfacial agent

 3. Binding Mortar
 4. 150 mm PE board

 5. Anti-crack mortar finishing
 6. 1st gridding

 7. Anti-crack mortar embedded
 8. 2nd gridding

 9. Anti-crack mortar finishing
 10. Flexible, waterproof putty

 11. Sealing lacquer
 12. Topcoat

Panes: 4 mm×3 layers inert gas filled Window frame: 60 mm PVC Labor: 5 workers / 5 days Material and installation cost: USD 70/m²

Control principle:

- motor cloth shade auto control & protection 1. Optical sensor: Solar shading will be activated if luminance is ≥ 7 klux (auto solar shading) 2. Temperature sensor: Solar shading will be foldedup if temperature is < 18°C (auto lighting)
- Wind sensor: Solar shading will be folded up if wind velocity is ≥ 30 km/h (avoids damage) Solar shading area: 124 m² (71 pcs in total) Labor: 5 workers/7days

Material and installation cost: USD $62/m^2$

Working principle:

USD 72,616

BUILDING ENERGY EFFICIENCY QUICK CALCULATION SHEET

Building Name: Quality Management Building Location: No. 1, Flag Raising Ceremony Square, BROAD Town, No. 3, BROAD Road, Changsha, Hunan, PRC Building Usage: Office, 400 Occupants Design Institute: BROAD Energy Efficiency Institute Designer: Deng Peng Design Date: October, 2008

Scope of Energy Consumption (check $\!\!\!\checkmark)$

- Heating / Cooling Equipment Energy Consumption (Electricity and Fuel)
- ☑ Heating / Cooling Transmission and Distribution System (Water Pump, Fan)
- Air Conditioning Terminal Electricity Consumption
- ☑ Ventilation
- Note:1. This *Quick Calculation Sheet* is a basis for retrofitted building energy efficiency level appraisal
 - 2. The upright letters are standard format which can not be changed; the italics are design values

Please fill in this sheet before starting the retrofitting design. With basic heat transfer knowledge and building information, this sheet can be easily completed in several hours or 1 to 2 days

Basic Information	Construction Da	Building Use Area: 4,212 m ²								
	Rennovation Da	Building Envelop Area: 4,220 m ²								
	Occupution rate 42%				Climate Zone:			C		
	Solar Radiation 39 W/m ²				Chilly Hot					
	Indoor-Outoor Temperature Difference Limit		Winter 23°C	G	Average Ir Exterior Te	iterior- empera-	Winter <i>15</i> ℃	J		
			Summer //℃	н	ture Differ	nece	Summer <i>8</i> ℃	к		
	Annual AirConditioning Operation Hours		Winter 200	L	Annual Ve	ntilation	6,240	р		
			Summer <i>1,350</i>	м	Operation	Hours				
imption	Category	Material	Thickness mm	Heat Coef W/m	Transfer ficient ² K	Area m ²	Heat Transfer W/℃			
y Consu	Exterior Wall	Polystyre-ne Board	150 100	0.24 0.35		1,220 1,584	293 554	-		
Incoming Envelope Load Energy	Roof	Extrusion Plate	100	0.23		1,222	281			
	Window	Triple-Paned Plastic Framed	4+9+4+ 9+4	1.65		124 (71Fans)	205	m of Ho		
	Other (including doors, parapet, galss room)				70		128	10		
	Radiant Heat:/24 m ² ×E= 4,836 W									
	Winter: L×Q×J+A+1,000 = / kWh/m ² per year Summer:(M×Q×K+ <i>677</i> ×R)+A+1,000 = <i>4.5</i> kWh/m ² per year									
Inc	Winter: L×Q× Summer:(M×C	J÷A÷1,000 I×K+ <i>677</i> ×R	= / kWh/m ²)+A+1,000 =	perye : <i>4.5</i> k	ear Wh/m² per	year		S T		
Energy Consumption	Winter: L×Q× Summer:(M×Q Season	J+A+1,000 I×K+ <i>677</i> ×R Ventilat− ion m ³ ∕m ²	= / kWh/m ²)+A+1,000 = Unit Enthalpy Differnce W∕m ⁸	Aver Aver Tem Diffe	ear Wh/m ² per age perature prence purs	year Heat Loss Efficien- cy	Energy Consu- mption kWh/m ² per year	T		
on Load Energy Consumption	Winter: L×Q× Summer:(M×C Season Winter	J+A+1,000 ×K+677×R Ventilat- ion m³∕m ² 2.8	= / kWh/m ²)+A+1,000 = Unit Enthalpy Differnce W∕m ³ 0.5	Aver Aver Tem Diffe ×Ho	ear XWh/m ² per age perature prence urs	year Heat Loss Efficien- cy <i>0.2</i>	Energy Consu- mption kWh/m ² per year <i>0.84</i>	S T		
Ventillation Load Energy Consumption	Winter: L×Q× Summer:(M×C Season Winter Summer	J+A+1,000 ×K+677×R Ventilat- ion m ³ ∕m ² 2.8 2.8	= / kWh/m ²)+A+1,000 = Unit Enthalpy Differnce W∕m ³ 0.5 1.0	J×L	ear Wh/m ² per age perature perature urs	year Heat Loss Efficien- cy 0.2 0.2	Energy Consu- mption kWh/m ² per year 0.84 6.0	S T L		
on Ventilation Load Energy Consumption In cr	Winter: L×Q× Summer:(M×Q Season Winter Summer Model	J+A+1,000 ×K+677×Rj Ventilat- ion m³∕m² 2.8 2.8 Load	= / kWh/m ²)+A+1,000 = Unit Enthalpy Differnce W/m ³ <i>0.5</i>	Aver Tem Diffe XHo	ear Wh/m² per age perature rence urs 1 UseTime	year Heat Loss Efficien- cy 0.2 0.2	Energy Consu- mption kWh/m ² per year 0.84 6.0 Energy Con. kWh	S T L		
umption Ventilation Load Energy Consumption In c.	Winter: L×Q× Summer:(M×Q Season Winter Summer Model Occupants	J+A+1,000 ×K+677×R Ventilat- ion m ³ /m ² 2.8 2.8 Load 400 ×100 V	= / kWh/m ² +A+1,000 = Unit Enthalpy Differnce W/m ³ 2.5 7.0	er ye 4.5 k Aver Temp Diffe ×Ho J×L K×N	ear Wh/m² per age perature rence urs 1 UseTime	year Heat Loss Efficien- cy 0.2 0.2	Energy Consu- mption KWh/m²per year 0.84 6.0 Energy Con. kWh 62,000	S T U		
Sonsumption Ventilation Load Energy Consumption In c.	Winter: L×Q× Summer:(M×Q Season Winter Summer Model Occupants Lighting	J+A+1,000 ×K+677×R Ventilat- ion m ³ /m ² 2.8 2.8 2.8 Load 400 × 100 V 2 W/m ² × A	= / kWh/m ² +A+1,000 = Unit Enthalpy Differnce W∕m ³ 0.5 1.0	per ye 4.5 Aver Temp Diffe XH0 J×L K×N F1 F2	ear Wh/m ² per age perature rence urs UseTime L+M 1,260	year Heat Loss Efficien- cy 0.2 0.2	Energy Consu- mption kWh/m ² per year 0.84 6.0 Energy Con. kWh 62,000 10,614	S T U		
rgy Consumption Ventilation Load Energy Consumption Inc.	Winter: L×Q× Summer:(M×G Season Winter Summer Model Occupants Lighting Appliances	J+A+1,000 ×K+677×R Ventilat- Ion m ³ /m ² 2.8 2.8 2.8 Load 400 ×100 V 2 W/m ² × A Computers: 2.00 × 100 V	= 7 kWh/m ² ++A+1,000 = Unit Enthalpy Differnce W∕m ³ 	per ye #.5 Aver Temp Diffe XHo J×L K×N F1 F2 F3	ear Wh/m ² per- age perature rence urs UseTime L+M <i>1,260</i> L+M	year Heat Loss Efficien- cy 0.2 0.2	Energy Consu- mption kWh/m ² per 9.84 6.0 Energy Con. kWh 62.000 10.614 37.200	S T U		
leat Energy Consumption Ventilation Load Energy Consumption Inc.	Winter: L×O× Summer:(M×O Season Winter Summer Model Docupants Lighting Appliances	J+A+1,000 ×K+677×R Ventilat- ion m³√m² 2.8 2.8 Load 400 ×100 V 2 W/m² × A Computers: 300×80 W Water Heat 1.2 kW tetc.	= / kWh/m ²)+A + 1,000 = Unit Enthalpy Differnce W∕m ³ 2.5 1.0	per yo # 4.5 k Aver Temp Diffe XH0 J×L K×N F1 F2 F3 F4	aar Wh/m ² per age perature rence uurs UseTime L+M <i>1,260</i> L+M <i>1,260</i>	year Heat Loss Efficien- cy 0.2 0.2	Energy Consu- mption kWh/m [*] per 9.84 6.0 Energy Con. kWh 62,000 10,614 32200 1,512	S T U V		
oor Heat Energy Consumption Ventilation Load Energy Consumption Inc.	Winter: L×O× Summer:(M×O Season Winter Summer Model Docupants Lighting Appliances	J→A+1,000 ×K+677×R Ventilat- ion m ³ /m ² 2.8 2.8 Load 400 ×100 V 2 W/m ² × A Computers: 300×80 W Water Heat 1.2 kW dec. Lobection Rate	= 7 kWh/m ²)+A + 1,000 = Unit Enthalpy Differnce W∕m ³ 2.5 1.0 V per capita er: er: e 20 %	per yo #.5 I Aver Temp Diffe XHo J×L K×N F1 F2 F3 F4	aar Wh/m ² per age perature rence urs UseTime L+M <i>1,260</i> L+M	year Heat Loss Efficien- cy 0.2 0.2	Energy Consu- mption kWh/m [*] per 9.84 6.0 Energy Con. kWh 62,000 10,614 33,200 1,512	S T L V		
Indoor Heat Energy Consumption Ventilation Load Energy Consumption Inc.	Winter: L×O× Summer:(M×C Season Winter Summer Model Occupants Lighting Appliances Winter: Va++ Summer: Va++	J→A+1,000 ××K+677×R Ventilat- lon m³√m² 2.8 2.8 2.8 Load 400 ×100 V 2.9/m² × A Computers: 300×80 W Water Heat 1.2 ×W etc. Distributers: 300×80 W Water Meat 1.2 ×W etc. Distributers: 2.8 × 0.00 × 1.00 V 2.8 × 0.00 × 1.00 V 2.8 × 0.00 × 0.00 V 2.8 × 0.00 V 3.00 V 3.00 × 0.00 V 3.00	= / kWh/m ² ++A+1,000 = Unit Enthalpy Differnce W/m ³ 0.5 1.0 V per capita er: er: 8 80 % kWh/m ² per y 24 kWh/m ² per y	per yo 4.5 I Aver Temj Diffe XHa J×L K×N F1 F2 F3 F4 rear rear	aar Wh/m ² per age pereture prence urs UseTime L+M <i>1,260</i> L+M <i>1,260</i>	year Heat Loss Efficien- cy 0.2 0.2	Energy Consu- mption kWh/m ² per year 0.84 6.0 Energy Con. kWh 82,000 10,614 37,200 1,512	S T V V		
Load Indoor Heat Energy Consumption Ventilation Lead Energy Consumption Inc.	Winter: L×O× Summer:(M×O Season Winter Summer Model Occupants Lighting Appliances Winter:W×a+ Summer/W×a+ Heating Load QG+L+L(L×J)	J-A+1,000 XK+8777XR Ventilat- lon m ³ /m ² 2.8 2.8 Load 400 × 100 V 2 W/m ² XA Computers: 300×80 W Water Heat 1.2 kW dec. sloction Rat X×0.87 = 12 X×0.87 =	 = / kWh/m² + A + 1,000 = Unit Enthalpy Difference W/m³ 2.5 2.0 V per capita er: a 20 % kWh/m² per yg 2.4 kWh/m² per yg 2.4 kW	Per yea = 4.5 + Aver Tem Diffe ×Ho J×L K×N F ₁ F ₂ F ₃ F ₄ -12.9	sar Wh/m ² per age perature rence uurs UseTime L+M <i>1,260</i> L+M <i>1,260</i> r kW	year Heat Loss Efficien- cy 0.2 0.2	Energy Consumption kWh/m [*] per 9.84 6.0 Energy Con. kWh 62.000 10.614 37.200 1,512	S T U V V Z b		

Model BCT70		Number 2		Functions	Adjusted Energy Efficiency		
				Heating Cooling	0.88 1.1	e f	
Energy Consumptic	W on Sur	'inter (S+I nmer (T+'	U -Y)÷e = 0 kN V+Z)÷f = 26.3	Wh/m²·a kWh/m²·a	1	g h	
Transmissio	on and Dis	tribution	System Energ	y Consumpti	on		
Model	Number	Motor Power kW	Operation Frequency Coefficient	Opera- tion Time	Converted Primary Energy Consump. kWh/m ² ·a	m (700	
A/C Water Pump	2	1.1	0.6	L+M	2.1	ative Ener	
Cooling Water Pump	2	0.75	0.6	М	1.2	(Accumul	
Cooling Tower	2	1.5	0.6	м	2.5	1	
Ventilation	and A/C	Terminal	Energy Consu	mption			
Model	Number	Motor Power kW		Electricity Consum- ption kWh	Converted Primary Energy Consump. kWh/m ² ·a	ive Energy)3	
Heat Recovery Fresh Air Unit	11	11.7		//.7×C ×P/A =7.3	7.3×4 =29	(Accumulat	
Annual Ener g+h+m+n	rgy Consur	nption Pe	r Square Meter	(Primary Ene	rgy)		
		61.2	'kWh/	m²•a			
Annual Tota Annual Tota	I Power 2	<i>16,716</i> kW <i>198</i> m ³	'n				
Yearly CO ₂ E	Emissions:	<i>60.7</i> tons	(14 kg/m²•a)				
Design App Qualified Excessiv Calculati	oroval(che d re Energy (ion Error. P	ck√) Consumpt zevise	ion, Change De	esign			

APARTMENT NO. 1

Building usage: Staff dorm Designed occupants: 380 Usage area: 4,700 m² Built in 1994 Retrofitted in 2009 Energy consumption before retrofitting: 339 kWh/m²·a Energy consumption after retrofitting: 64 kWh/m²·a Retrofit expense: 20,000 USD Energy saving rate: 81% Payback: 2 years

Wall Insulation

Thickness of polystyrene foam board: 150 mm, reducing heat transfer by 8 times.

Exterior thermal insulation technology is very easy to learn and can be executed by ordinary workers. Polystyrene foam board is fixed by anchor bolts which are inserted into 40 mm foam, eradicatiing heat transfer

Original Wall: Without insulation and exterior ceramic veneer

Triple-paned Plastic Framed Window Reduces heat transfer by 8 times

Balcony

Install steel balconies to dry clothes without the clothes dryer

APARTMENT NO. 2

Building usage: Staff dorm Designed occupants: 400 Usage area: 3,578 m² Built in 1995 Retrofitted in 2009 Energy consumption before retrofitting: 345 kWh/m²·a Energy consumption after retrofitting: 63 kWh/m²·a Retrofit expense: 203,000 USD Energy saving rate: 82% Payback: 2.6 years

APARTMENT NO. 3

Building usage: Staff dorm Designed occupants: 500 Usage area: 5,011 m² Built in 1996 Retrofitted in 2009 Energy consumption before retrofitting: 552 kWh/m²·a Energy consumption after retrofitting: 126 kWh/m²·a Retrofit expense: 272,000 USD Energy saving rate: 77% Payback: 1.7 years

MEDITERRANEAN CLUB

Building usage: Chinese restaurant, western restaurant, gym, swiming pool, guest suites Designed occupants: 250 Usage area: 3, 150 m² Built in 1999 Retrofitted in 2010 Energy consumption before retrofitting: 412 kWh/m²·a Energy consumption after retrofitting: 82.5 kWh/m²·a Retrofit expense: 230,000 USD Energy saving rate: 80% Payback: 2.7 years

Wall Insulation

Thickness of polystyrene foam board: 200 mm, reducing heat transfer by 11 times Red sandstone decoration wall was restored after thermal insulation

Original Wall: Clay brick wall Dry-hung red sandstone

Column Insulation

Thickness of polystyrene foam: 50 mm, reducing heat transfer by 2.5 times

Block Big Windows Thickness of polystyrene foam board: 150 mm. The rest windows were changed into triple-paned plastic framed windows, reducing heat transfer by 12 times

NANSHAN VILLA NO. 1

Building usage: Residence Designed occupants: 16 Usage area: 850 m² Built in 1999 Retrofitted in 2010 Energy consumption before retrofitting: 340 kWh/m²·a Energy consumption after retrofitting: 65.4 kWh/m²·a Retrofit expense: 50,000 USD Energy saving rate: 81% Payback: 3.7 years

Before Retrofitting

Wall Insulation

Thickness of polystyrene foam board: 150 mm, reducing heat transfer by 8 times The imitated granite decoration wall was grooved after thermal insulation

Original Wall: Clay brick with granite

Roof Thermal Insulation Thickness of extruded board: 150 mm, reducing heat transfer by 10 times The original tiled roof was restored

after thermal insulation

Original Roof: No thermal insulation, villa concrete-tile roof

Exterior Motor Blinds Solar Shading

Reduces heat transfer by 0.3 kW

Heat Recovery Fresh Air Unit Installed under the eaves

NANSHAN VILLA NO. 2

Building usage: Residence Designed occupants: 16 Usage area: 850 m² Built in 2000 Retrofitted in 2009 Energy consumption before retrofitting: 353 kWh/m²·a Retrofit expense: 74,200 USD Energy saving rate: 83% Payback: 3.8 years

Wall Insulation

Thickness of polystyrene foam board: 200 mm, reducing heat transfer by 11 times The original wall was imitated by grooving after thermal insulation

Original Wall: Clay brick with sandstone

Extra Triple-paned Plastic Framed Window

Triple-paned windows were added on the original double-paned windows, reducing heat transfer by 5 times

Original: Double-paned aluminum window

Original double-paned aluminum door remains unchanged, extra doublepaned plastic framed door added

Exterior Motorized Blinds Solar Shading

Reduces heat transfer by 0.3 kW


```
Original: Interior
sun blind
```


Heat Recovery Fresh Air Unit Installed in the lobby

AMERICAN VILLA

Building usage: Residence Designed occupants: 8 Usage area: 264 m² Built in 2000 Retrofitted in 2009 Energy consumption before retrofitting: 436 kWh/m²·a Energy consumption after retrofitting: 63.3 kWh/m²·a Retrofit expense: 20,300 USD Energy saving rate: 86% Payback: 2.7 years

Before Retrofitting (outlook completely restored)

SPANISH VILLA

Building usage: Residence Designed occupants: 10 Usage area: 330 m² Built in 2000 Retrofitted in 2010 Energy consumption before retrofitting: 352 kWh/m²·a Energy consumption after retrofitting: 54.5 kWh/m²·a Retrofit expense: 33,400 USD Energy saving rate: 84% Payback: 4.3 years

GERMAN VILLA

Building usage: Residence Designed occupants: 8 Usage area: 307 m² Built in 1999 Retrofitted in 2011 Energy consumption before retrofitting: 402 kWh/m²·a Energy consumption after retrofitting: 41.8 kWh/m²·a Retrofit expense: 44,300 USD Energy saving rate: 90% Payback: 3.7 years

Before Retrofitting

After Retrofit (outlook completely restored)

JAPANESE VILLA

Building Usage: Residence Designed Occupants: 12 Usage area: 320 m² Built in 1999 Retrofitted in 2011 Energy consumption before retrofitting: 380 kWh/m²·a Energy consumption after retrofitting: 66.6 kWh/m²·a Retrofit expense: 30,800 USD Energy saving rate: 82% Payback: 4 years

ARK HOTEL

Building usage: Residence Designed occupants: 70 Usage area: 1,420 m² Built in 1997 Retrofitted in 2008 Energy consumption before retrofitting: 556 kWh/m²·a Energy consumption after retrofitting: 86.5 kWh/m²·a Retrofit expense: 92,300 USD Energy saving rate: 80% Payback: 2.2 years

Before Retrofitting

MARKETING BUILDING

Building Usage: Office Designed Occupants: 150 Usage area: 949 m² Built in 1999 Retrofitted in 2009 Energy consumption before retrofitting: 413 kWh/m²·a Energy consumption after retrofitting: 59.8 kWh/m²·a Retrofit expense: 66,200 USD Energy saving rate: 86% Payback: 2.6 years

ENVIRONMENTAL PHILOSOPHY INSTITUTE

Building usage: Meeting, training Designed occupants: 440 Usage area: 4,500 m² Built in 1999 Retrofitted in 2012 Energy consumption before retrofitting: 320 kWh/m²·a Energy consumption after retrofitting: 84.1 kWh/m²·a Retrofit expense: 692,300 USD Energy saving rate: 74% Payback: 8 years

Roof Insulation

Polyurethane spray coating: 200 mm, reducing heat transfer by 20 times Double layer waterproof membranes be paved after thermal insulation

Original Roof: Cast-in-site, roof with perlite insulation

Wall Insulation

Thickness of polystyrene foam board: 80-200 mm EPS decorative components were restored after retrofit

Original Wall: Concrete brick with decorative cement components

Carved board

Decoration for Exterior Thermal Insulation

Polystyrene foam board decoration

Original Decoration: Decorative cement opponents

kWh/m²a (primary energy) Regular Buildings 350 Global Common 700 -Regular Buildings Development CO2 equivalent with Behavioral Energy Saving Mode 600 280 500 400 Global Building Common Energy-Efficient Buildings Development Mode 0.1 bil ton 300 Energy-Efficient Buildings Global Emission 200 80 with Behavioral Energy Saving Reduction Mode 60 Passive House 100 Global Building 15 Retrofitting Mode 2010 2020 2030

GLOBAL CO2 EMISSION TREND

TYPICAL BUILDING ENERGY CONSUMPTION

BROAD BUILDING ENERGY EFFICIENCY 远大建筑节能有限公司

BROAD Town, Changsha +86-731-84086688 www.broad.com bsbs@broad.net

100g/m² paper

To preserve forest & water sources, pls follow us to adopt compact layout & thin paper printing

2018. 01 5th Edition Copies: 10,000 BY236-10 © 2018